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Abstract
The rapid development of smart glasses, especially used in home
context brings significant privacy risks. Current privacy controls
are often device-specific, lacking the granularity and automation
needed for the dynamic home environment. We introduce Situ-
Guard, a novel privacy management framework designed to pro-
vide fine-grained, contextual and automatic control over smart
glasses’ visual data in home environments. SituGuard utilizes a
multi-dimensional privacy categorization schema and an adaptive
policy engine that leverages LLMs to dynamically assess privacy
acceptability and enforce user-defined rules. It automatically de-
tects sensitive objects locally, adopts privacy engine and finally
automatically obfuscates the objects. An evaluation study (N=12)
proved the feasibility of SituGuard, its automatic control and user
feedback modules.

CCS Concepts
• Security and privacy→ Privacy protections; • Computing
methodologies→ Computer vision.
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1 Introduction
The proliferation of smart glasses, exemplified by products like
Ray-Ban Meta and Orion AR, marks their increasing integration
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into users’ daily lives [3]. These devices hold significant potential
for in-home applications, such as health self-monitoring [2, 14],
intelligent household management [2], and social interaction [14].

However, the convenience of smart glasses is shadowed by un-
precedented privacy risks associated with their always-on visual
sensors. These sensors capture vast amounts of data [3, 8], ren-
dering traditional permission models ineffective [4]. The context-
dependent nature of privacy necessitates a dynamic trade-off be-
tween privacy and utility [18, 19], making static redaction tech-
niques sub-optimal. Furthermore, the continuous nature of video
streams presents a significant control challenges for users who can
often only intervene asynchronously [15].

Prior work on dynamic privacy control has extended traditional
permission models [4] with fine-grained approaches [1, 7, 12, 15].
Yet, object-based controls often require repetitive manual verifica-
tion, which is difficult to scale in complex home environments with
multiple salient objects [15]. Group-based controls can impose a
significant cognitive load on users, hindering their ability to achieve
satisfactory outcomes [1]. Consequently, both approaches fall short
in minimizing user effort particularly for smart glasses.

The advent of Large Language Models (LLMs) offers a promising
avenue for advanced image understanding and automated privacy
control [18]. Despite this potential, there has been limited research
on integrating LLMs to create automatic privacy-preserving tech-
niques. This paper takes a first step through introducing SituGuard,
a technique designed to automate privacy control for smart glasses
in home environments through novel LLM-based techniques.

The core of SituGuard is an LLM-driven engine that generates
contextual privacy protection rules. SituGuard first employs a local-
ized object detection module to identify private objects within the
visual streams. It then leverages Qwen3-8B1 to reason about appro-
priate privacy protections based on the specific context, user prefer-
ences, and a multi-dimensional privacy classification of household
objects. Qwen3-8B automatically generates rules such as redacting
and retaining specific objects, which are then executed through
targeted obfuscation. This significantly eases users’ control efforts,
especially in fine-grained privacy control. Through a user study
(N=12), SituGuard outperformed alternative techniques without
1quantized to 4-bit.
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Figure 1: The interaction flow of SituGuard.

either LLM-based control or manual user adjustment. Participants
reported high user satisfaction, a strong sense of perceived control
and low cognitive load when using SituGuard.

2 Related Work
Our work builds upon three research areas: the privacy challenges
of smart glasses, the evolution of permission models, and fine-
grained visual privacy controls. Existing protectionmechanisms
for smart glasses have been shown to be inadequate.On-device
indicators are often ineffective [3], and manual controls such as slid-
ers [1] or automatic detection [15] impose a significant burden on
users, particularly for managing fine-grained preferences. Our work
addresses these limitations by leveraging LLMs to automatically
reason about and protect sensitive visual information.

Traditional permission models, like install-time or run-
time requests, are ill-suited for the continuous and passive
data gathering inherent to smart glasses [4, 17]. While one-
time permissions are an improvement, they still lack the granularity
required for dynamic environments [17]. Context-aware models
have been developed to reduce user cognitive load [5, 17], but
they typically focus on device-level access rather than fine-grained
control over specific objects [17]. SituGuard extends these dynamic
approaches by enabling object-level privacy control based on the
specific contexts of a user’s home.

Fine-grained visual privacy control follows twomain streams:
modifying control interfaces [1, 12] and enabling object-level
filtering [7, 9, 13, 15]. Interface-based approaches have moved
beyond binary permissions to include graded controls, such as pro-
viding approximate location data [5] or using sliders to balance
privacy and utility [1, 12]. However, these methods offer limited
granularity. The second stream focuses on filtering specific ob-
jects, such as redacting bystanders [7]. Yet, these systems often
require users to manually configure policies by selecting objects to
block [13] or retain [9]. This manual configuration is cognitively
demanding and impractical, as privacy management is often a sec-
ondary task [13]. While Aragorn automated object recognition, it
still required manual selection, leaving unsolved the challenge of
efficiently configuring policies for multiple objects [15]. SituGuard
addresses this gap by using an LLM to automatically generate and
adapt multi-object privacy rules, thereby minimizing user effort.

3 Design and Implementation
System Flow. As illustrated in Figure 2, SituGuard consists of four
modules: sensitive object identification, privacy rule set construc-
tion, LLM-based policy generation and group-based erasure. Upon
users’ using smart glasses to complete tasks, their cameras would
capture the environment. SituGuard would detect and selectively
obfuscate the sensitive objects in the recordings with a frame-wise
manner. The users could also express their preference to obfuscate
or not obfuscate through pointing on the detected object boxes. The
backend privacy setting around the object would correspondingly
change. SituGuard at the backend would first track the image taken
and apply a localized object detection model to identify sensitive
objects. It pre-generates a dynamic classification engine to deter-
mine the privacy attributes and control rules for each object. It
then uses LLM to reason given users’ attributes and rules, result-
ing in contextually appropriate control settings. Finally, SituGuard
operationalizes the settings through pixel-wise erasure.

System Design.We introduce the four modules in the system
flow in this section separately. These interconnected modules are
designed to achieve efficient localized obfuscation, while at the
same time minimize users’ cognitive load, without inducing high
hardware cost that may hinder deployment.

Dynamic object identification. As the objects in the recorded
view is rapidly changing, we identified the objects in a frame-wise
manner, using localized fine-tuned detection models to balance
accuracy, processing speed and hardware cost. This choice is be-
cause for home environments, the private objects are extensively
benchmarked [16], and we could get reliable results and datasets
on identifying objects. Different from Aragorn [15], we tracked
multiple dynamic objects instead of only one object because, in
most of the tasks the recorded view contain different saliency ob-
jects crucial for the task, or at least, different contextually sensitive
objects. We selected Yolo-v10 for processing rather than Yolo-world
(an open world model), other variations of yolos, or variants like
detectrons for high detection accuracy and light-weighted imple-
mentation, which was verified in one of our pilot study. We chose
the small sized model, Yolo-v10n, to make it compatible with the
hardware specificity of mainstream smart glasses.

Dynamic rule construction. We combined different classifica-
tions to construct a multi-dimensional rule set, which were then
input into LLMs as the context for classification. We first combined
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Figure 2: The system flow of SituGuard.

the results of previous works [16] to construct a comprehensive
set of private objects. For classifications, we followed two primary
aspects: sensitivity of the data and the spatial distribution of the
data. For the sensitivity of the data, we followed previous work [16]
and identified the spectrum of data sensitivity for each data type.
This sensitivity guided the obfuscation, where more sensitive data
corresponds to stricter rules in obfuscation, and less sensitive data
corresponds to less strict rules in obfuscation. We classified the
data into three categories: high sensitive, middle sensitive and
low sensitive. We also grouped objects according to the places of
their common appearance, such as living room objects (e.g., books,
badges, TV screen), bedroom objects (e.g., underwear, swimming
suit). Besides the classification, to adaptively guide the judgment,
the LLM took two set of rules. The first set followed privacy by
design principle where all private objects would be erased. This
guarantees users’ privacy to a maximum level. The second set is
defined by users, where they control the setting through clicking
on the interface to allow or disallow the collection of a specific data
type under specific context. These multi-dimensional attributes and
rules serve as the basis for SituGuard’s policy decisions.

LLM-based assessment. We used Qwen3-8B for dynamic as-
sessment based on the multi-dimensional attributes and rules con-
structed previously. Notably, we input LLMs with the context of the
recordings, the task, the objects in the image, andmulti-dimensional
attributes and rules for decision. The decision would be effective
in an asynchronous way until the next round of the assessment,
as LLMs’ latency are longer than the frame rates. We used LLMs
for generating the data policy of each data type, as LLMs exhibited
privacy-related contextual awareness in previous work [10].

Adaptive object obfuscation.After generating privacy rules, we
used pixel-wise replacement to execute adaptive object obfuscation.
SituGuard performed obfuscation according to LLMs’ assessment.
If the object was decided to be obfuscated, SituGuard would replace
it with white pixels to avoid revealing users’ private information.

System Implementation.We implemented the system onHololens2
smart glasses and a Lenovo R9000P laptop with a RTX 3060 graph-
ical card (6GB Memory). This setting mimics daily usage, which
facilitates deployment. We used C script and python for implemen-
tation. The detection on Hololens2 used onnx, while the Qwen3-8B
ran with ollama framework. We used socket for communications
between the smart glasses and the laptop.

For the dynamic object identification, we finetuned Yolov10 on
LVIS [6] and MSCOCO2017 [11] datasets, which are commonly
used datasets featuring daily objects, and contained ample home
environment objects. We used Yolov10n with a precision of 0.6704
to balance accuracy, model size and inference latency.

For the LLM-based assessment, the prompt adopts a role-play
manner, letting LLMs to act as privacy evaluator to generate ap-
propriate data control rules. We input Qwen3-8B (1) a context
description containing the task users entered, and the application
the users are currently used, (2) multi-dimensional classifications
and rules, (3) the object name and positions detected. The output
generates a binary collection setting (yes or no) for each object,
guiding the adaptive object obfuscation. For the obfuscation, we
adopted the unity engine for pixelwise camera replacement before
sending them to the application. Notably, to ease calculation, we
used the bounding box detected by the yolo model as the object’s
borders, rather than to segment the object.

4 User Study
4.1 Study Setup
Participants and Apparatus. This IRB-approved study recruited
12 participants (5M, 7F, aged 19-26, SD=2.3) through distributing
questionnaires on online platforms. 3 participants are from IT-
related occupations, 2 participants are from finance-related occu-
pations, and others are from other disciplinarian. Each participant
received 100 RMB as compensation.

Study Design. The study employed a within-subjects design,
with the two factors being technique and scenario. We compared
three ablation variations of SituGuard:

• SituGuard automatically provided a recommended privacy
configuration. Users can freely accept ormanually adjust this recom-
mendation by selecting or deselecting specific items to be anonymized.

•Manual-only control removed the context-aware recommen-
dation feature. For each scenario, it has with no default obfuscation.
Users were required to configure their privacy control settings from
scratch by manually selecting all the items they wished to obscure.
This condition helped evaluate automated suggestions.

• Recommendation-only control removed the manual adjust-
ment feature, displaying its recommended rules and obfuscation
for the scenario. Users could only accept or reject the entire recom-
mendation, and could not make adjustments. This condition helped
evaluate user agency and perceived control of SituGuard.

For scenario, we selected four representative scenarios accord-
ing to the prior work on home environments: daily health moni-
toring and behavior management [2, 14], household and lifestyle
management [2], social interaction and contextual awareness [14],
multimodal learning and work assistance [14].

Procedure. After providing informed consent and completing
a demographic questionnaire, participants were introduced to the
study’s premise and the three techniques they would interact with.
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For each trial, participants were presented with an interactive
mockup of one of the three system conditions. They were asked to
use the given interface to set their preferred privacy level for that
scenario. After completing the task, they completed questionnaires
around the condition’s usability, their perceived sense of control,
cognitive load, and overall satisfaction. This process was repeated
until all three techniques are evaluated across all scenarios.

Analysis Methods.We used Friedman non-parametric test to
analyze the subjective ratings, comparing the usability scores (e.g.,
SUS, out of 100), cognitive load ratings (e.g., NASA-TLX, out of 21),
and Likert scale (out of 7) for perceived control and satisfaction
across the three techniques. Post-hoc pairwise comparisons with
Bonferroni correction were used to examine specific differences be-
tween conditions. For privacy protection effectiveness, the ground
truth count of sensitive items were pre-identified by one author
manually. This author discussed with other authors intermittently
to ensure the reliability of the results.

4.2 Results
4.2.1 Privacy Protection Effectiveness. To assess the effectiveness
of each technique, we measured the number of sensitive items users
chose to anonymize compared to a “ground truth” count of sensitive
items pre-identified by the researchers for each scenario.

Our findings indicate that SituGuard enabled users to configure
privacy settings that most closely matched the ground truth. Partic-
ipants using the SituGuard consistently anonymized an appropriate
number of sensitive objects across all scenarios. In theManual-only
condition, participants frequently overlooked items, resulting in
under-protection. On average, participants in this condition missed
30% of the sensitive items in the multimodal learning and work
assistance scenario, the most complex environment. Conversely,
the Recommendation-only condition often led to a binary choice,
either accept a potentially over-protective configuration or reject it
entirely, leaving sensitive information exposed. For instance, in the
household and lifestyle management scenario, 5/12 users rejected
the recommendation because it obscured an item they needed for
the task, thereby failing to anonymize any items at all.

4.2.2 Subjective Ratings. Our analysis found a statistically signifi-
cant main effect of the technique across all four metrics: usability
(System Usability Scale, SUS), cognitive load (NASA-TLX), perceived
control, and overall satisfaction (𝑝 < .05 for all).

SituGuard received the highest scores for both usability (M=88.5,
SD=5.2) and overall satisfaction (M=6.6, SD=0.7). It was rated sig-
nificantly more usable and satisfying than both the Manual-only
(M=65.3 for usability, M=4.5 for satisfaction), and Recommendation-
only (M=72.1 for usability, M=5.0 for satisfaction) conditions. For
cognitive load, the Manual-only condition imposed the highest
cognitive load (M=16.8, SD=3.3), which was significantly higher
than both SituGuard (M=7.5, SD=2.1) and Recommendation-only
(M=6.2, SD=1.9). Participants in the manual condition reported feel-
ing overwhelmed by the need to “scan everything from scratch”.
For perceived control, the Recommendation-only condition scored
significantly lower on perceived control (M=4.1, SD=1.1) compared
to SituGuard (M=6.5, SD=0.6) and Manual-only (M=6.2, SD=0.8).
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